August 1986 Revised March 2000

FAIRCHILD

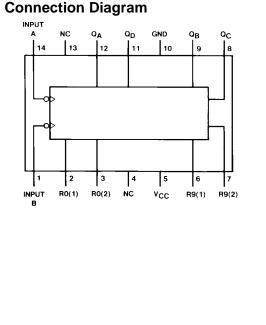
SEMICONDUCTOR

DM74LS90 Decade and Binary Counters

General Description

Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five for the DM74LS90.

All of these counters have a gated zero reset and the DM74LS90 also has gated set-to-nine inputs for use in BCD nine's complement applications.


To use their maximum count length (decade or four bit binary), the B input is connected to the Q_A output. The input count pulses are applied to input A and the outputs are as described in the appropriate truth table. A symmetrical divide-by-ten count can be obtained from the DM74LS90 counters by connecting the Q_D output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_A .

Features

- Typical power dissipation 45 mW
- Count frequency 42 MHz

Ordering Code:

Order Number	Package Number	Package Description
DM74LS90M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
DM74LS90N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Reset/Count Truth Table

Reset Inputs				Output						
R0(1)	R0(1) R0(2) R9(1) R9(2)					Q_B	$\mathbf{Q}_{\mathbf{A}}$			
Н	Н	L	Х	L	L	L	L			
н	н	Х	L	L	L	L	L			
Х	Х	н	н	н	L	L	н			
Х	L	Х	L	COUNT						
L	х	L	х	COUNT						
L	Х	Х	L	COUNT						
Х	L	L	Х		COL	COUNT				

© 2000 Fairchild Semiconductor Corporation DS006381

DM74LS90

I	Function Tables						
		BCD Co	ount Seque	nce (Note ?	1)		
	Count		Out	tput			
		QD	Q _C	QB	Q _A		
	0	L	L	L	L		
	1	L	L	L	Н		
	2	L	L	Н	L		
	3	L	L	Н	Н		
	4	L	н	L	L		
	5	L	н	L	н		
	6	L	Н	Н	L		
	7	L	н	н	н		
	8	н	L	L	L		
	9	Н	L	L	Н		

Count		Output				
	Q _A	QD	Q _C	Q _B		
0	L	L	L	L		
1	L	L	L	Н		
2	L	L	Н	L		
3	L	L	н	н		
4	L	Н	L	L		
5	н	L	L	L		
6	н	L	L	н		
7	н	L	н	L		
8	н	L	н	н		
9	Н	Н	L	L		

Bi-Quinary (5-2) (Note 2)

H = HIGH LevelL = LOW LevelX = Don't Care

Note 1: Output Q_A is connected to input B for BCD count.

Note 2: Output Q_D is connected to input A for bi-quinary count.

Note 3: Output Q_A is connected to input B.

Logic Diagram $R9(1) \frac{(6)}{(7)}$ (12) QA J Q INPUT A (14) CLOCK ĸ (9) QB Q J INPUT B (1) CLOCK ĸ ⁽⁸⁾ QC Q J CLOCK ĸ (11) QD Q CLOCK ĸ Q R0(1) (2) R0(2) (3)

The J and K inputs shown without connection are for reference only and are functionally at a high level.

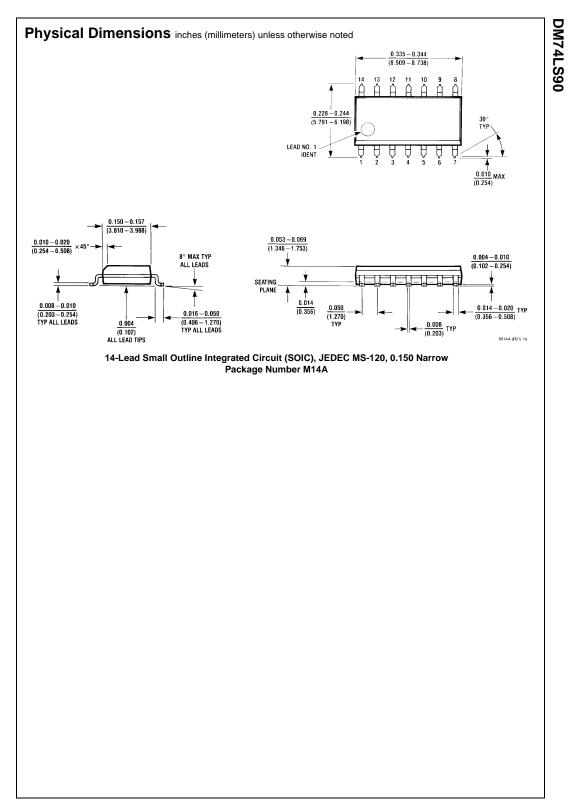
Absolute Maximum Ratings(Note 4)

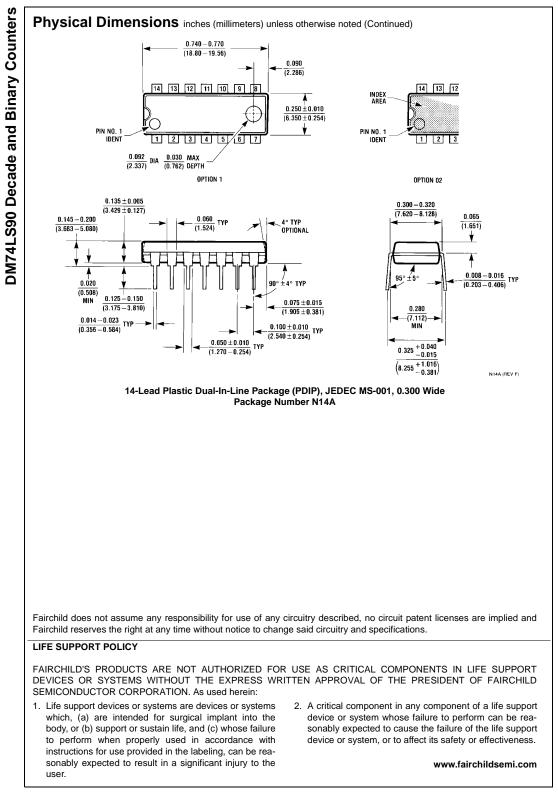
Supply Voltage	7V
Input Voltage (Reset)	7V
Input Voltage (A or B)	5.5V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	–65°C to +150°C

Note 4: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbo	ol P	arameter	Min	Nom	IV IV	lax	Units
V _{CC}	Supply Voltage	Supply Voltage		5	5.	.25	V
V _{IH}	HIGH Level Input Vol	HIGH Level Input Voltage					V
VIL	LOW Level Input Volt	LOW Level Input Voltage			C	.8	V
он	HIGH Level Output C	HIGH Level Output Current			-1	0.4	mA
OL	LOW Level Output Cu	LOW Level Output Current				8	mA
fclk	Clock Frequency (No	Clock Frequency (Note 5) A to Q _A			3	32	MHz
		B to Q _B	0		1	16	
f _{CLK}	Clock Frequency (No	te 6) A to Q _A	0		2	20	MHz
		B to Q _B	0		1	10	
t _W	Pulse Width (Note 5)	A	15				
		В	30				ns
		Reset	15				
tw	Pulse Width (Note 6)	A	25				
		В	50				ns
		Reset	25	1			
t _{REL}	Reset Release Time		25				ns
REL	Reset Release Time		35				ns
-KEL						70	°C
Note 5: CL Note 6: CL Electi	Free Air Operating Te = 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist	V _{CC} = 5V. V _{CC} = 5V. H ICS	0				
Note 6: CL	= 15 pF, R _L = 2 k Ω , T _A = 25°C and V = 50 pF, R _L = 2 k Ω , T _A = 25°C and V	V _{CC} = 5V. V _{CC} = 5V. H ICS	wise noted)	Min	Тур	Max	Units
Note 5: C _L : Note 6: C _L : Electi over recom	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist nmended operating free air temp Parameter	V _{CC} = 5V. V _{CC} = 5V. EICS erature range (unless other Cond	wise noted)	Min		Max	Units
Note 5: C _L : Note 6: C _L : Electi over recom Symbol	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist nmended operating free air temp Parameter Input Clamp Voltage	$V_{CC} = 5V.$ $V_{CC} = 5V.$ EICS erature range (unless other Cond $V_{CC} = Min, I_1 = -18 \text{ mA}$	wise noted)	Min	Тур		
Note 5: C _L : Note 6: C _L : Electi over recom Symbol	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist nmended operating free air temp Parameter Input Clamp Voltage HIGH Level	$V_{CC} = 5V.$ $V_{CC} = 5V.$ Errature range (unless other Cond $V_{CC} = Min, I_1 = -18 \text{ mA}$ $V_{CC} = Min, I_{OH} = Max$	wise noted)	Min 2.7	Тур	Max	Units
Note 5: C _L : Note 6: C _L : Electi over recom Symbol V ₁ V _{OH}	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist nmended operating free air temp Parameter Input Clamp Voltage HIGH Level Output Voltage	$V_{CC} = 5V.$ $V_{CC} = 5V.$ Example the second s	wise noted)		Typ (Note 7)	Max	Units
Note 5: C _L : Note 6: C _L : Electi over recom Symbol V ₁	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist nmended operating free air temp Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level	$\label{eq:linear} \begin{array}{c} V_{CC} = 5V. \\ V_{CC} = 5V. \end{array}$	wise noted)		Typ (Note 7) 3.4	Max -1.5	Units V V
Note 5: C _L : Note 6: C _L : Electi over recom Symbol V ₁	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist nmended operating free air temp Parameter Input Clamp Voltage HIGH Level Output Voltage	$\label{eq:linear} \begin{array}{c} V_{CC} = 5V. \\ V_{CC} = 5V. \end{array}$	wise noted) tions		Typ (Note 7) 3.4 0.35	Max	Units
Note 5: C _L : Note 6: C _L : Electi over recom Symbol V ₁ V _{0H}	$= 15 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $= 50 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ rical Characterisi nmended operating free air temp Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage Output Voltage	$\label{eq:linear_constraints} \begin{array}{c} V_{CC} = 5V. \\ V_{CC} = 5V. \end{array}$	wise noted) tions (Note 8)		Typ (Note 7) 3.4	Max -1.5 0.5 0.4	Units V V
Note 5: CL Note 6: CL Election	= 15 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V = 50 pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and V rical Characterist nmended operating free air temp Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level	$eq:linear_line$	wise noted) tions		Typ (Note 7) 3.4 0.35	Max -1.5 0.5	Units V V
Note 5: C _L : Note 6: C _L : Electi over recom Symbol V ₁ V _{0H}	$= 15 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $= 50 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ rical Characterisi nmended operating free air temp Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage Input Current @ Max	$eq:linear_line$	wise noted) tions (Note 8) Reset		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1	Unit: V V
Note 5: C _L : Note 6: C _L : Electi over recom Symbol V ₁ V _{OH}	$= 15 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $= 50 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ rical Characterisi nmended operating free air temp Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage Input Current @ Max	$eq:linear_line$	wise noted) tions (Note 8) Reset A		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2	Unit: V V
Note 5: C _L : Note 6: C _L : Electi over recom Symbol V ₁ V _{0H}	$= 15 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $= 50 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $\textbf{rical Characterisi}$ $\textbf{nmended operating free air temp}$ $\textbf{Parameter}$ $\textbf{Input Clamp Voltage}$ $\textbf{HIGH Level}$ $Output Voltage$ $\textbf{LOW Level}$ $Output Voltage$ $\textbf{Input Voltage}$ $\textbf{Input Current @ Max}$ $\textbf{Input Voltage}$		wise noted) tions (Note 8) Reset A B		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2 0.4	Units V V
Note 5: С _L : Note 6: С _L : Electi symbol V ₁ V _{0H} V _{0L}	$= 15 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $= 50 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $\textbf{rical Characterisi}$ $\textbf{nmended operating free air temp}$ $\textbf{Parameter}$ $\textbf{Input Clamp Voltage}$ $\textbf{HIGH Level}$ $Output Voltage$ $\textbf{LOW Level}$ $Output Voltage$ $\textbf{Input Current @ Max}$ $\textbf{Input Voltage}$ $\textbf{HIGH Level}$		wise noted) tions (Note 8) Reset A B Reset		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2 0.4 20	Units V V mA
Note 5: С _L : Note 6: С _L : Electi Symbol V ₁ V _{0H} V _{0L}	$= 15 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $= 50 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $\textbf{rical Characterisi}$ $\textbf{nmended operating free air temp}$ $\textbf{Parameter}$ $\textbf{Input Clamp Voltage}$ $\textbf{HIGH Level}$ $Output Voltage$ $\textbf{LOW Level}$ $Output Voltage$ $\textbf{Input Current @ Max}$ $\textbf{Input Voltage}$ $\textbf{HIGH Level}$		wise noted) tions (Note 8) Reset A B Reset A		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2 0.4 20 40	Units V V mA
Note 5: C _L : Note 6: C _L : Electi over recom Symbol V ₁ V _{OH}	$= 15 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $= 50 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $\textbf{rical Characterist}$ $\textbf{nmended operating free air temp}$ $\textbf{Parameter}$ $\textbf{Input Clamp Voltage}$ $\textbf{HIGH Level}$ $Output Voltage$ $\textbf{LOW Level}$ $Output Voltage$ $\textbf{Input Current @ Max}$ $\textbf{Input Voltage}$ $\textbf{HIGH Level}$ $\textbf{Input Current}$		wise noted) tions (Note 8) Reset A B Reset A B Reset A B		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2 0.4 20 40 80	Units V V mA
Note 5: С _L : Note 6: С _L : Electi Symbol V ₁ V _{0H} V _{0L}	$= 15 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $= 50 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $\textbf{rical Characterisi}$ nmended operating free air temp Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage Input Current @ Max Input Voltage HIGH Level Output Voltage Input Current @ Max Input Voltage HIGH Level Output Voltage LOW Level Output Voltage HIGH Level Input Current HOW Level Input Voltage		wise noted) tions (Note 8) Reset A B Reset A B Reset A B Reset A B Reset		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2 0.4 20 40 80 -0.4	Units V V mA µA
Note 5: С _L : Note 6: С _L : Electi Symbol V ₁ V _{0H} V _{0L}	$= 15 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $= 50 \text{ pF}, \text{ R}_{\text{L}} = 2 \text{ k}\Omega, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ and }^{1}$ $\textbf{rical Characterisi}$ nmended operating free air temp Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage Input Current @ Max Input Voltage HIGH Level Output Voltage Input Current @ Max Input Voltage HIGH Level Output Voltage LOW Level Output Voltage HIGH Level Input Current HOW Level Input Voltage		wise noted) tions (Note 8) Reset A B Reset A B Reset A B Reset A A		Typ (Note 7) 3.4 0.35	Max -1.5 0.5 0.4 0.1 0.2 0.4 20 40 80 -0.4 -2.4	Units V V mA µA


DM74LS90


 $\label{eq:continued} \begin{array}{l} \textbf{Electrical Characteristics} & (Continued) \end{array}$ Note 8: Q_A outputs are tested at I_{OL} = Max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability. Note 9: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 10: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

Switching Characteristics at V_{CC} = 5V and T_A = 25°C

	Parameter	From (Input)	$R_L = 2 k\Omega$				
Symbol		To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock	A to Q _A	32		20		MHz
	Frequency	B to Q _B	16		10		IVITIZ
t _{PLH}	Propagation Delay Time	A to Q _A		16		20	ns
	LOW-to-HIGH Level Output	A IO QA		10		20	115
t _{PHL}	Propagation Delay Time	A to Q _A		18		24	ns
	HIGH-to-LOW Level Output	A IO QA		10		24	115
t _{PLH}	Propagation Delay Time	A to Q _D		48		52	
	LOW-to-HIGH Level Output	A IO QD		40		52	ns
t _{PHL}	Propagation Delay Time	A to O		50		60	
	HIGH-to-LOW Level Output	A to Q _D		50		60	ns
t _{PLH}	Propagation Delay Time	R to O		10		23	
	LOW-to-HIGH Level Output	B to Q _B	16		23	ns	
t _{PHL}	Propagation Delay Time	R to O		21		20	
	HIGH-to-LOW Level Output	B to Q _B		21		30	ns
t _{PLH}	Propagation Delay Time	D to O		32		37	ns
	LOW-to-HIGH Level Output	B to Q _C		32		37	115
t _{PHL}	Propagation Delay Time	B to Q _C		35		44	ns
	HIGH-to-LOW Level Output	BIOQC				44	115
t _{PLH}	Propagation Delay Time	B to Q _D		32		36	
	LOW-to-HIGH Level Output	BIOQD		32		30	ns
t _{PHL}	Propagation Delay Time	B to Q _D		35		44	ns
	HIGH-to-LOW Level Output	BIOQD				44	115
	Propagation Delay Time	SET-9 to Q ₄ , Q _D		30		35	ns
	LOW-to-HIGH Level Output	$S = 1 - 9 \ (O \ Q_A, Q_D)$		30		30	ns
t _{PHL}	Propagation Delay Time	SET-9 to Q _B , Q _C		40		48	200
	HIGH-to-LOW Level Output	3⊏1-9 10 Q _B , Q _C	4	40		48	ns
t _{PHL}	Propagation Delay Time	SET-0 to Any Q		40		50	20
	HIGH-to-LOW Level Output	SET-U LO ANY Q		40		52	ns

